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Optimized Verlet-like algorithms for molecular dynamics simulations
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Explicit velocity- and position-Verlet-like algorithms of the second order are proposed to integrate the
equations of motion in many-body systems. The algorithms are derived on the basis of an extended decom-
position scheme at the presence of a free parameter. The nonzero value for this parameter is obtained by
reducing the influence of truncated terms to a minimum. As a result, the proposed algorithms appear to be more
efficient than the original Verlet versions that correspond to a particular case when the introduced parameter is
equal to zero. Like the original versions, the extended counterparts are symplectic and time reversible, but lead
to an improved accuracy in the generated solutions at the same overall computational costs. The advantages of
the optimized algorithms are demonstrated in molecular dynamics simulations of a Lennard-Jones fluid.

DOI: 10.1103/PhysRevE.65.056706 PACS number~s!: 02.60.Cb, 02.70.Ns, 05.10.2a, 95.75.Pq
i
a
o

a
ge

a
b

nd

a-
e-
nd
e

n
pl

a-
ls
a

ifi
s

di
as

s

nt
,
tic
e
go

tin

,

e
by

tial

en

o

-
ed
a-
The method of molecular dynamics~MD! is a powerful
tool for the prediction and study of various phenomena
physics, chemistry, and biology. In MD simulations we de
with the necessity to solve numerically the equations of m
tion for a many-body system composed of interacting p
ticles. The most of traditional algorithms, such as Run
Kutta and predictor-corrector schemes@1,2#, are usually
unsuitable for integration of the resulting differential equ
tions, because the solutions obtained exhibit a high insta
ity on MD scales of time@3#.

A variety of alternative algorithms were proposed a
implemented over the years@4–8#. These include the well-
known velocity-Verlet~VV ! integrator@7#. This second-order
integrator is employed in the great majority of MD simul
tions due to its simplicity and exceptional stability. Mor
over, the VV algorithm is symplectic, time reversible, a
able to reach a high level of accuracy with minimal numb
of force evaluations per time step@3,8#. In addition, the VV
approach can be modified to integrate not only translatio
motion in atomic systems, but also simulate more com
cated molecular and spin liquids@9–12#.

The question of how to improve the efficiency of integr
tion for atomic systems with long-range interactions has a
been considered. As a result, so-called multiple time sc
integrators have been introduced@13,14#. In these integra-
tors, the additional slow subdynamics is treated in a spec
way using the weakness of the long-range forces. The fa
motion, caused by the interactions at short interparticle
tances, remains to be integrated with the help of usual b
algorithms, such as VV integrator, for instance.

In the present paper we show that even within the ba
consideration of translational motion~when additional split-
ting of interaction potentials into multiple scale compone
is no longer allowed!, the VV algorithm presents, in fact
only a particular case among a whole family of symplec
reversible integrators of the second order. This case app
to be not so optimal, and more efficient second-order al
rithms are possible.

The equations of motion for a classical system consis
of N particles can be cast in the following compact form:
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5Lr~ t !, ~1!

where r[$r i ,vi% denotes the full set (i 51,2, . . . ,N) of
phase variables withr i andvi being the position and velocity
respectively, of thei th particle,L is the Liouville operator,

L5(
i 51

N S vi•
]

]r i
1

f i

m
•

]

]vi
D[A1B, ~2!

f i52( j ( j Þ i )
N w8(r i j )r i j /r i j designates the force acting on th

particles of massm each, due to the interactions described
the potentialw(r i j ), andr i j 5r i2r j . The Liouville operator
has been split in Eq.~2! into the free-motionA5v•]/]r and
potential B5f/m•]/]v parts with v[$vi%, r[$r i%, and
f[$f i%.

The formal solution of Eq.~1! is

r~h!5eLhr~0![e(A1B)hr~0!, ~3!

where h denotes the time step. Of course, the exponen
propagatoreLh cannot be evaluated exactly at anyh ~solu-
tions in quadratures are possible only forN52 that is not
relevant for our consideration of many-body systems wh
N@1). However, at small enough values ofh, the total
propagator allows to be decomposed@15–18# as

e(A1B)h5 )
p51

P

eAapheBbph1O~hK11!, ~4!

where the coefficientsap andbp are chosen in such a way t
provide the highest possible value forK>1 at a given inte-
ger numberP>1. Then, starting from an initial configura
tion r(0), the evolution of the system can be investigat
during arbitrary timest by repeating the single-step propag
tion, r(t)5(eLh) lr(0)[(e(A1B)h) lr(0), i.e.,

r~ t !5S )
p51

P

eAapheBbphD l

r~0![S~ t !r~0!, ~5!
©2002 The American Physical Society06-1
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wherel 5t/h is the total number of steps and the truncati
termsO(hK11), appearing in Eq.~4!, have been neglected

The main advantage of decomposition~4! is that the ex-
ponential subpropagatorseAt and eBt are analytically inte-
grable. Indeed,

eAtr[ev•]/]rt$r ,v%5$r1tv,v%,
~6!

eBtr[ef/m•]/]vt$r ,v%5$r ,v1tf/m%,

which represent simple shifts of positions and velocities,
spectively~with t being equal toaph or bph). In addition,
the generated trajectory~5! behaves symplectically~like ex-
act solutions!, because such separate shifts do not change
volume in phase space. The time reversibilityS(2t)r(t)
5r(0) of solutions @following from the propertyS21(t)
5S(2t) of evolution operators# can also be obtained b
imposing additional conditions on the coefficientsap and
bp . Namely, a150, ap115aP2p11, and bp5bP2p11, or
ap5aP2p11, and bp5bP2p at bP50. In other words, the
subpropagatorseAt and eBt should enter symmetrically in
the decompositions. Then the even-order truncation te
O(h2k) will disappear automatically in Eq.~4! at k<K/2.
For this reason, the orderK of reversible algorithms may
accept only even numbers. The cancellation of odd-or
termsO(h2k21) will be provided by satisfying a set of bas
conditions for ap and bp . For example, the condition
(p51

P ap5(p51
P bp51 is required to cancel the first-orde

truncation uncertainties.
The method just highlighted is quite general to build n

merical integrators of arbitrary orders. In particular, t
second-order (K52) VV algorithm

e(A1B)h5eBh/2eAheBh/21O~h3! ~7!

is immediately reproduced from Eq.~4! at P52 and a1
50, b15b251/2, a251. The case when the operatorsA
and B are replaced by each other (A↔B) is also possible,
and we come to the so-called position-Verlet~PV! algorithm
@13#, e(A1B)h5eAh/2eBheAh/21O(h3), corresponding to the
choicea15a251/2, b151, andb250. Algorithms of higher
orders can also be derived in a similar way. For instance,
fourth-order (K54) algorithm by Forest and Ruth@16# is
obtained from Eq.~4! at P54, whereas sixth-order (K56)
schemes are derivable@15# beginning fromP58. The high-
order schemes involve, however, too large number of fo
recalculations, and appear to be less efficient in most of
applications than second-order algorithms.

Despite the fact that the method of construction of tim
reversible integrators using symplectic decompositions is
new, some important cases have never been considered
have been completely ignored in the literature. This c
cerns, in particular, the following question. Are the abo
Verlet algorithms optimal in view of the time efficienc
among all possible basic~i.e., with single splitting of the
Liouville operator! decomposition integrators of the seco
order? We can say only that the Verlet algorithms do m
mize the number of force evaluations per time step. Ho
ever, as will be shown below, this does not guarantee
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optimization with respect to the overall number of force r
calculations~the most time-consuming part of MD simula
tions!, which are necessary to perform during a fixed obs
vation time in order to achieve a given precision in solutio

It can be seen readily that the Verlet algorithms (P52)
require only one (P21) force evaluation per time steph,
whereas the fourth- and higher-order schemes (P>4) need
in three or more such evaluations. Let us consider now
intermediate caseP53 that leads to an extended time
reversible propagation in the form

e(A1B)h5eAjheBh/2eA(122j)heBh/2eAjh1Ch31O~h4!
~8!

following from Eq. ~4! at a15a3[j, a25122j, b15b2
51/2, andb350. Again, the propagation withA↔B is also
acceptable~then a150, b15b3[j, b25122j, and a2
5a351/2). Formula~8! represents a whole family of sym
plectic time-reversible integrators of the second order
which a particular member can be extracted by choosin
value for free parameterj. For j50, Eq. ~8! reduces to the
VV @see Eq.~7!# or PV ~at A↔B) algorithm. The extended
~when jÞ0) propagation requires already two, instead
one, force recalculation per time step. For this reason, we
come to an incorrect conclusion that such a propagation
no advantage over the Verlet algorithms.

In order to prove that the above conclusion is indeed
correct, let us analyze in more detail the influence of trun
tion errorsCh3 on the result. Expanding both the sides of E
~8! into Taylor’s series with respect toh, one finds

C5a~j!†A,@B,A#‡1b~j!†B,@B,A#‡, ~9!

where

a~j!5
126j16j2

12
, b~j!5

126j

24
~10!

and@ ,# denotes the commutator of two operators. The no
of C with respect to the third-order commutators†A,@B,A#‡
and†B,@B,A#‡ is

g~j!5Aa2~j!1b2~j!. ~11!

Then the norm of local uncertaintiesCrh3 appearing in
phase trajectoryr during a single-step propagation given b
Eqs. ~3! and ~8! can be expressed in terms ofg andh asg
5gh3. During a whole integration over a fixed time interv
t, the total numberl of such single steps is proportional t
h21 @see Eq.~5!#. As a result, the local third-order uncertain
ties will accumulate step by step leading att@h to the
second-order global errorsG5gh21, i.e.,

G~j,h!5g~j!h2 . ~12!

Extended propagation~8! can now be optimized with re
spect toj by minimizing the functiong(j). As can be veri-
fied readily, the minimum ofg(j) is achieved atj5z, where
6-2
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z5
1

2
2

~2A326136!1/3

12
1

1

6~2A326136!1/3

'0.193 183 327 503 783 6 ~13!

and consistsg(z)'0.008 55. On the other hand, the valu
g(0) of g corresponding to the Verlet algorithms~when j
50) is equal to g(0)'0.0932, i.e., it increases in
g(0)/g(z)'11 times. Remembering that the extend
propagation requires two force evaluation per time steph, it
should be performed with double step size 2h with respect to
that of the Verlet algorithms, in order to provide the sam
number of total force recalculations during the integrat
over the same time interval. Therefore, the extended pro
gation will be more efficient if the following inequality
G(j,2h),G(j50,h) takes place. Taking into account E
~12!, such an inequality can be rewritten asg(0)/g(j).4,
and thus it is fulfilled completely in the optimization regim
In particular,

G~z,2h!

G~j50,h!
'0.367, ~14!

indicating that the optimized propagation, being applied e
with double sizes of the time step, will reduce the glob
errors approximately in three times.

In view of Eqs.~3!, ~6!, and~8!, more explicit expressions
for the single-step propagation of position and velocity fro
time t to t1h within the optimized VV-like algorithm are:

r I5r ~ t !1v~ t !jh,

vI5v~ t !1
1

m
f„r I…h/2,

r II5r I1vI~122j!h, ~15!

v~ t1h!5vI1
1

m
f„r II…h/2,

r ~ t1h!5r II1v~ t1h!jh,

whereas the optimized PV-like algorithm@whenA↔B in Eq.
~8!# reads

vI5v~ t !1
1

m
f„r ~ t !…jh,

r I5r ~ t !1vIh/2,

vII5vI1
1

m
f„r I…~122j!h, ~16!

r ~ t1h!5r I1vIIh/2,

v~ t1h!5vII1
1

m
f„r ~ t1h!…jh,
05670
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where the parameterj should take its optimal valuez @see
Eq. ~13!#, and r I, r II , vI, andvII are the auxiliary quantities
denoting positions and velocities of all particles in inte
mediate stages. The algorithms are simple, require o
slight modification with respect to the original Verlet ve
sions, and can be easily implemented in program codes.

It is worth pointing out that the order of local error
O(h3)[Crh3[C$r ,v%h3 remains three in both position
r (t1h) and velocityv(t1h) for both the optimized algo-
rithms ~15! and ~16! @because the functionsa(j) and b(j)
cannot tend to zero simultaneously at anyj]. Note also that
the minimization of third-order uncertaintiesCh3 in Eq. ~8!
automatically minimizes the fourth-order truncation term
O(h4) that are connected withC by the relationO(h4)
5 1

2 @C(A1B)1(A1B)C#h41O(h5). Further optimization
is also possible in specific cases. For instance, some
applications are aimed exclusively at the investigation
structural properties of the system. Then the accuracy of
termining particle positions will play a more important ro
than that of velocities. In such a situation, it is quite natu
to increase the precision in evaluation ofr (t1h) by reducing
the position partCrh35@a(j)C11b(j)C2#rh3 of third-
order truncation errors to zero, whereC15†A,@B,A#‡ and
C25†B,@B,A#‡ @see Eq.~9!#. This reduction can be realized
because~as can be shown using the explicit expressions foA
and B) the operatorC2 vanishes when acting on position
i.e., C2r50, whereasC1rÞ0 ~as well asC1vÞ0 and C2v
Þ0). The influence ofC1r can be reduced to zero also b
choosing suchj at which a(j)50. Among the two roots
(171/A3)/2 of equationa(j)50, the preference should b
given to the first of them, (121/A3)/2, because it leads to
smaller value forub(j)u. Then replacingj by (121/A3)/2 in
Eq. ~15!, we come to a positionally optimized VV-like algo
rithm in which the positions will be generated up to th
fourth-order truncation uncertaintiesO(h4).

Another useful application of the positionally optimize
algorithm is the case of weakly interacting systems, wh
the Liouville operator can be presented in the formL5A
1eB with e!1. Then the operator†B,@B,A#‡[C2, which
forms the third-order errors in velocity, will be proportion
to e2 and, thus, can be neglected. For the same reason
corresponding fourth-order uncertainties1

2 @C2(A1B)1(A
1B)C2)]h4 will also behave likee2. In such a case, the
positionally optimized algorithm can be considered as
quasi-fourth-order integrator that, contrary to the us
fourth-order schemes, will require only two~instead of three!
force evaluations per time step.

In order to obtain a positionally optimized algorithm
within the PV-like integration~16!, it is necessary simply to
replacej by the root 1/6 of equationb(j)50. Note that the
values 1/6'0.167 and (121/A3)/2'0.211 are close enoug
to the optimal solution~13! that minimizes the total position
velocity uncertainties. Nevertheless, the positionally op
mized algorithms are not recommended to be used in gen
case when both the position and velocity must be evalua
with a maximal accuracy. In other words, in such partia
optimized algorithms the increased precision in posit
evaluation is achieved at the expense of decreas
6-3
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accuracy in determining the velocities. Indeed,g(0)/
g(1/6)[g(0)/ua(1/6)u'7 and g(0)/g@(121/A3)/2#
[g(0)/ub@(121/A3)/2#u'8 that is less than the facto
g(0)/g(z)'11 corresponding to optimal value~13!.

Our theoretical predictions were verified by testing t
VV- and PV-like algorithms in MD simulations of a
Lennard-Jones~LJ! fluid. We considered a system compos
of N5256 particles interacting through the LJ potent
F(r )54u@(s/r )122(s/r )6# in a basic cubic box of volume
V5L3 using periodic boundary conditions. The LJ potent
was truncated atr c5L/2'3.36s and shifted to be zero at th
truncation point to avoid the force singularities, i.e.,w(r )
5F(r )2F(r c) at r ,r c andw(r )50 otherwise. The simu-
lations were carried out in a microcanonical ensemble a
reduced density ofn* 5(N/V)s350.845 and a reduced tem
perature ofT* 5kBT/u51.7. The equations of motion wer
integrated with the help of Eqs.~15! and ~16! in which the
parameterj, being constant within each run, varied from o
run to another. All the runs started from an identical w
equilibrated initial configurationr(0), andfurther continued
l 510 000 time steps. The precision of generated soluti
was measured in terms of the relative total energy fl
tuations E5Š(E2^E&)2

‹

1/2/u^E&u, where E5 1
2 ( i 51

N mvi
2

1 1
2 ( iÞ j

N w(r i j ) and^& denotes the microcanonical averagin
Note that in microcanonical ensembles the total energy is
integral of motion,E(t)5E(0), and theabove fluctuations
should be equal to zero if the equations of motion are sol
exactly. So that in approximate MD integration, smaller v
ues of E will correspond to a more precise evaluation
phase trajectory.

The total energy fluctuations obtained in the simulatio
at the end of the runs for four~fixed within each run! dimen-
sionless time steps,h* 5h(u/ms2)1/250.01, 0.005, 0.0025
and 0.001, are shown in Fig. 1 as depending on free par
eterj. The subsets~a! and~b! of this figure correspond to th
VV- and PV-like integration, respectively. As can be seen,
the dependenciesE(j,h) have one minimum that locates
the same pointj'0.19 independently on the sizeh of the
time step. This point coincides completely with the minimu
at z @Eq. ~13!# of functiong(j) @Eq. ~11!# that is included in
Fig. 1 as well~dashed curves in the subsets!. Moreover, the
energy fluctuationsE(j,h) appear to be proportional to th

FIG. 1. The total energy fluctuations obtained in the simulatio
for different values of free parameterj at four reduced time steps
h* 50.01, 0.005, 0.0025, and 0.001, using the VV@subset~a!# and
PV @subset~b!# -like integration@Eqs.~15! and ~16!, respectively#.
The simulation results are presented by circles connected by
solid curves. The functiong(j) @see Eq.~11!# is plotted in both the
subsets by the dashed curve.
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norm G(j,h) of global errors@see Eq.~12!#, and the coeffi-
cient of this proportionality almost does not depend onj and
h. In addition, at each step size considered the energy fl
tuations decrease at the minimum more than in ten tim
with respect to those atj50, that is in agreement with ou
predicted valueg(0)/g(z)'11.

The result for the total energy fluctuations as functions
the length of the simulations corresponding to the optimiz
~at j5z) VV- and PV-like algorithms is presented in Fig.
at the same set of time steps. These functions are plotte
curves marked as OVV and OPV, respectively. For the p
pose of comparison, the functions corresponding to the or
nal VV and PV integrators are also drawn there~curves
marked as VV and PV!. Note that for the original integrators
the time step within each subset was chosen to be alw
twice smaller than that of the optimized versions~this con-
dition is necessary to provide the same number of force
calculations during the same observation time!, namely,h*
50.005, 0.0025, 0.00125, and 0.0005@see subsets~a!, ~b!,
~c!, and~d!, respectively#. Note also that within the origina
Verlet algorithms, the third- and higher-orders truncation u
certainties become too big at step sizesh* .0.005. In par-
ticular, then the ratio of the total energy fluctuations to t
fluctuations in potential energy~the standard ratio for esti
mating the precision of the calculations! appears to be more
than a few percent. For this reason, such large step s
cannot be used in precise MD simulations and, thus, are
considered in the present study.

As we see from Fig. 2, both the original~VV and PV! and
optimized~OVV and OPV! algorithms exhibit very good sta
bility properties ~the excellent stability can be explaine
@3,8# by the symplecticity and time reversibility of the pro
duced solutions!. No systematic deviations in the total en
ergy fluctuations can be observed for all the integrators.
stead, in each of the cases the amplitude of these devia

s

he

FIG. 2. The total energy fluctuations as functions of the len
of the simulations performed using the optimized VV~solid curve
marked as OVV! and PV~dashed curve, OPV! algorithms, as well
as the original VV~solid curve, VV! and PV~dashed curve, PV!
integrators. The results corresponding to different values of the t
step, namely,h* 50.01 and 0.005, 0.005 and 0.0025, 0.0025 a
0.00125, as well as 0.001 and 0.0005 are presented in subset~a!,
~b!, ~c!, and~d!, respectively.
6-4
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tends to its own value that does not increase with furt
increasing the length of the simulations. However, this va
appears to be significantly larger for the original versions V
and PV. On the other hand, using the optimized OVV a
OPV algorithms even with double sizes of the time step
lows us to decrease the unphysical energy fluctuations
proximately in factor of 3. This is in an excellent accord wi
our theoretical prediction~14!. Note also that the OPV algo
rithm is slightly better in energy conservation than its OV
version~whereas the VV integrator is better with respect
the PV counterpart!. Furthermore, in view of the structure o
Eqs. ~15! and ~16!, the OPV algorithm is more convenien
when averaging macroscopic quantities. In particular, t
the interparticle potentials can be calculated at the end
time steps simultaneously with the interparticle forces wit
the same loop, increasing the time efficiency of the com
tations.

In conclusion, we point out that advanced second-or
velocity- and position-Verlet-like algorithms have been p
posed to improve the efficiency in MD simulations of cla
sical systems. The algorithms are explicit~i.e., do not require
any iteration!, simple in implementation, and produce stab
solutions that~like exact phase trajectories! are symplectic
and time reversible. The main advantage of the introdu
algorithms with respect to the widely used Verlet integrat
is the possibility to generate more precise trajectories at
,

, J

:
,
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same overall computational efforts. As has been dem
strated in a particular case of microcanonical MD simu
tions of a LJ fluid, the proposed algorithms allow one
reduce in several times the unphysical fluctuations of
total energy.

It has been shown rigorously within a consequent theo
ical approach that the proposed algorithms with respec
their time efficiency should be considered as optimal amo
all decomposition second-order integrators at single splitt
of the Liouville operator. The optimized algorithms can
adapted to multiple scale integration~at the presence of long
range interactions when the potential part of the Liouvi
operator is decomposed additionally! and extended to many
component systems with orientational degrees of freed
Moreover, the presented decomposition~8! of noncommuta-
tive operators is applicable for quantum Monte Carlo sim
lations@18# ~because all the time coefficients at the expon
tial propagators remain positive in the optimized regim!.
These and other questions will be considered in further
vestigations.
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